精英家教网 > 高中数学 > 题目详情
在区间D上,如果函数f(x)为增函数,而函数
1
x
f(x)
为减函数,则称函数f(x)为“弱增”函数.已知函数f(x)=1-
1
1+x

(1)判断函数f(x)在区间(0,1]上是否为“弱增”函数;
(2)设x1,x2∈[0,+∞),x1≠x2,证明|f(x2)-f(x1)|<
1
2
|x2-x1|

(3)当x∈[0,1]时,不等式1-ax≤
1
1+x
≤1-bx
恒成立,求实数a,b的取值范围.
分析:(1)显然f(x)在区间(0,1]为增函数,化简
1
x
f(x)
的解析式为
1
1+x+
1+x
,显然是减函数,可得f(x)在区间(0,1]为“弱增”函数.
(2)化简|f(x2)-f(x1)|的解析式为
|x2-x1|
1+x2
1+x1
(
1+x2
+
1+x1
)
,由,即可证得命题成立.
(3)当x∈(0,1]时,不等式等价于:
a≥
1
x
f(x)
b≤
1
x
f(x)
,由
1
x
f(x)
为减函数,可得1-
2
2
1
x
f(x)<
1
2
,从而求得实数a,b的取值范围.
解答:解:(1)显然f(x)在区间(0,1]为增函数,
1
x
f(x)=
1
x
(1-
1
1+x
)=
1
x
1+x
-1
1+x
=
1
x
x
1+x
(
1+x
+1)
=
1
1+x+
1+x

1
x
f(x)
为减函数.∴f(x)在区间(0,1]为“弱增”函数.
(2)|f(x2)-f(x1)|=|
1
1+x2
-
1
1+x1
|=
|
1+x1
-
1+x2
|
1+x2
1+x1
=
|x2-x1|
1+x2
1+x1
(
1+x2
+
1+x1
)

∵x1,x2∈[0,+∞),x1≠x2
1+x2
1+x1
(
1+x2
+
1+x1
)>2

∴|f(x2)-f(x1)|
1
2
|x2-x1|

(3)∵当x∈[0,1]时,不等式1-ax≤
1
1+x
≤1-bx
恒成立. 当x=0时,不等式显然成立.
当x∈(0,1]时.等价于:
a≥
1
x
f(x)
b≤
1
x
f(x)

由(1)
1
x
f(x)
为减函数,1-
2
2
1
x
f(x)<
1
2
,∴a≥
1
2
,b≤1-
2
2
点评:本题考查函数的单调性的判断和证明,不等式的证明,体现了分类讨论的数学思想,得到当x∈(0,1]时.等价于:
a≥
1
x
f(x)
b≤
1
x
f(x)
,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在区间D上,如果函数f(x)为增函数,而函数
1
x
f(x)
为减函数,则称函数f(x)为“弱增函数”.已知函数f(x)=1-
1
1+x

(1)判断函数f(x)在区间(0,1]上是否为“弱增函数”;
(2)设x1,x2∈[0,+∞),且x1≠x2,证明:|f(x2)-f(x1)|<
1
2
|x1-x2|

(3)当x∈[0,1]时,不等式1-ax≤
1
1+x
≤1-bx恒成立,求实数a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省扬州市期末数学复习试卷3(解析版) 题型:解答题

在区间D上,如果函数f(x)为增函数,而函数为减函数,则称函数f(x)为“弱增”函数.已知函数
(1)判断函数f(x)在区间(0,1]上是否为“弱增”函数;
(2)设x1,x2∈[0,+∞),x1≠x2,证明
(3)当x∈[0,1]时,不等式恒成立,求实数a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源:广东三模 题型:解答题

在区间D上,如果函数f(x)为增函数,而函数
1
x
f(x)
为减函数,则称函数f(x)为“弱增”函数.已知函数f(x)=1-
1
1+x

(1)判断函数f(x)在区间(0,1]上是否为“弱增”函数;
(2)设x1,x2∈[0,+∞),x1≠x2,证明|f(x2)-f(x1)|<
1
2
|x2-x1|

(3)当x∈[0,1]时,不等式1-ax≤
1
1+x
≤1-bx
恒成立,求实数a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南京市金陵中学高考数学预测试卷(1)(解析版) 题型:解答题

在区间D上,如果函数f(x)为增函数,而函数为减函数,则称函数f(x)为“弱增函数”.已知函数f(x)=1-
(1)判断函数f(x)在区间(0,1]上是否为“弱增函数”;
(2)设x1,x2∈[0,+∞),且x1≠x2,证明:|f(x2)-f(x1)|<
(3)当x∈[0,1]时,不等式1-ax≤≤1-bx恒成立,求实数a,b的取值范围.

查看答案和解析>>

同步练习册答案