【题目】已知函数,.
(Ⅰ)若,求的极值;
(Ⅱ)求函数的单调区间.
【答案】(Ⅰ)极大值,极小值;(Ⅱ)见解析.
【解析】
(Ⅰ)将代入函数的解析式,求出该函数的定义域与导数,求出极值点,然后列表分析函数的单调性,可得出函数的极大值和极小值;
(Ⅱ)求出函数的导数为,对分、、和四种情况讨论,分析导数在区间上的符号,可得出函数的单调区间.
(Ⅰ)当时,,函数的定义域为,
,令,或.
列表如下:
极大值 | 极小值 |
所以,函数的极大值,极小值;
(Ⅱ)由题意得,
(1)当时,令,解得;,解得.
(2)当时,
①当时,即时,
令,解得或;令,解得;
②当时,恒成立,函数在上为单调递增函数;
③当时,即当时,
令,解得或;令,解得.
综上所述,当时,函数的单调递增区间为,单调递减区间为;
当时,函数的单调递增区间为,,单调递减区间为;
当时,函数的单调递增区间为;
当时,函数的单调递增区间为,,单调递减区间为.
科目:高中数学 来源: 题型:
【题目】在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是,甲、乙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.设每人回答问题正确与否相互独立的.
(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省为了了解和掌握2019年高考考生的实际答卷情况,随机地取出了100名考生的数学成绩,数据如下:(单位:分)
135 | 98 | 102 | 110 | 99 | 121 | 110 | 96 | 100 | 103 |
125 | 97 | 117 | 113 | 110 | 92 | 102 | 109 | 104 | 112 |
105 | 124 | 87 | 131 | 97 | 102 | 123 | 104 | 104 | 128 |
109 | 123 | 111 | 103 | 105 | 92 | 114 | 108 | 104 | 102 |
129 | 126 | 97 | 100 | 115 | 111 | 106 | 117 | 104 | 109 |
111 | 89 | 110 | 121 | 80 | 120 | 121 | 104 | 108 | 118 |
129 | 99 | 90 | 99 | 121 | 123 | 107 | 111 | 91 | 100 |
99 | 101 | 116 | 97 | 102 | 108 | 101 | 95 | 107 | 101 |
102 | 108 | 117 | 99 | 118 | 106 | 119 | 97 | 126 | 108 |
123 | 119 | 98 | 121 | 101 | 113 | 102 | 103 | 104 | 108 |
(1)列出频率分布表;
(2)画出频率分布直方图和折线图;
(3)估计该省考生数学成绩在分之间的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有7位歌手(1至7号)参加一场歌唱比赛, 由550名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 200 | 150 | 50 |
(Ⅰ) 为了调查大众评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
组别 | A | B | C | D | E |
人数 | 50 | 100 | 200 | 150 | 50 |
抽取人数 | 6 |