【题目】给定整数(),设集合,记集合.
(1)若,求集合;
(2)若构成以为首项,()为公差的等差数列,求证:集合中的元素个数为;
(3)若构成以为首项,为公比的等比数列,求集合中元素的个数及所有元素之和.
【答案】(1)(2)见解析(3)
【解析】
(1)由新定义和集合的列举法,可得所求集合;
(2)运用等差数列为递增数列,以及性质,即可得到所求个数;
(3)由等比数列的通项公式和性质,结合新定义计算可得所求结论.
(1)因为,
当时,
∴.
(2) 因为构成以为首项,()为公差的等差数列,所以有(),以及().
此时,集合中的元素有以下大小关系:
.
因此,集合中含有个元素.
(3)由题设,.
设集合,.
①先证中的元素个数为,即从集合中任取两个元素,它们的和互不相同.
不妨设,于是.
显然.
假设,可得,即.
因为,,所以,又,于是,等式不成立.
因此,.
同理可证.
②再证.
不妨设,于是.
显然,.
假设,可得,即,
因为,所以,又,于是,等式不成立.
因此,.
由①②,得,且.
此时,集合中的元素个数为.
集合中所有元素的和为.
科目:高中数学 来源: 题型:
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期低于平均数的患者,称为“短潜伏者”,潜伏期不低于平均数的患者,称为“长潜伏者”.
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识.对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出表数据:
(天) | |||||
(天) |
(1)以统计数据为依据,求出关于的线性回归方程;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为时空气数值不合格的天数.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,有以下命题:
①是奇函数;
②单调递增函数;
③方程仅有1个实数根;
④如果对任意有,则的最大值为2.
则上述命题正确的有_____________.(写出所有正确命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色、相邻区域颜色不同,则区域不同涂色的方法种数为( )
A.360B.400C.420D.480
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装着10个外形完全相同的小球,其中标有数字1的小球有1个,标有数字2的小球有2个,标有数字3的小球有3个,标有数字4的小球有4个.
现从袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性都相等,用表示取出的三个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量的分布列;
(3)计算介于20分到40分之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为,第2组成绩为,第3组成绩为,第4组成绩为,第5组成绩为,样本频率分布直方图如下:
(1)估计全体考生成绩的中位数;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com