A. | $x=-\frac{π}{6}$ | B. | $x=\frac{5π}{12}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{3}$ |
分析 利用倍角公式可得函数y=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)+$\frac{1}{2}$,由2x-$\frac{π}{3}$=kπ,k∈Z,解得对称轴方程,k取值为-1即可得出.
解答 解:∵$y={cos^2}(x-\frac{π}{6})$=$\frac{1+cos(2x-\frac{π}{3})}{2}$=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)+$\frac{1}{2}$,
∴令2x-$\frac{π}{3}$=kπ,k∈Z,解得对称轴方程为:x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
∴当k=-1时,一条对称轴为x=-$\frac{π}{3}$.
故选:D.
点评 本题考查了三角函数的图象与性质、倍角公式,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x<0) | ||
C. | $\frac{y^2}{{{4^{\;}}}}+\frac{x^2}{3}=1$ | D. | $\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x>0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com