精英家教网 > 高中数学 > 题目详情
设函数
(I)证明:是函数在区间上递增的充分而不必要的条件;
(II)若时,满足恒成立,求实数的取值范围.
(I)见解析(II)
本试题主要是考查了导数在研究函数中的运用。
(1)利用是函数在区间上递增的充分而不必要的条件,分为两步来证明先证明充分性,再证明不必要性。
(2)求解导数分析导数为零的点,然后借助于导数为正或者为负数时的解集,得到单调增减区间,进而判定函数的极值,得到函数的最值,进而求解参数的范围。
解:(1)对函数求导,得 ,     …………2分
先证充分性:若
函数在区间上递增.                            ……………4分
再说明非必要性:在区间上递增, ∴对1<x<2恒成立
得,,而
所以,即                            …………5分
所以,是函数在区间上递增的充分而不必要的条件 ……7分
(2) ,令,得  
显然,时不符合题意. …………8分
时,函数在()上递增,在上递减,
时,恒成立,需=6
,得.               …………………10分
时,函数在()上递增,在上递减,
此时,,如满足恒成立,
 …………12分
故若时,满足恒成立,实数
------------------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数的定义域为(0,),且,设点P是函数图象上的任意一点,过点P分别作直线轴的垂线,垂足分别为M、N.
(1)求的值;
(2)问:是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若函数是定义域上的单调函数,求实数的取值范围;
(2)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处取得极值为,求的值;
(2)若上是增函数,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若上恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知函数处取得极值.
(1) 求
(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;
(Ⅱ)若函数f(x)在区间(-1,0)上是增数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案