精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,底面是边长为6的正三角形,底面,且与底面所成的角为

1)求三棱锥的体积;

2)若的中点,求异面直线所成角的大小(结果用反三角函数值表示).

【答案】(1)(2)

【解析】

1)由底面,可得与平面所成的角,且,因此在,,,代入求值即可;

2)设为棱的中点,连接,可得,的夹角为异面直线所成的角,即为,由求得,在利用余弦定理即可求出

解:(1)因为平面,所以与平面所成的角,

与平面所成的角为,可得,

因为平面,平面,所以,

,可知,

所以

2)设为棱的中点,连接,

分别是棱的中点,可得,

所以的夹角为异面直线所成的角,即为,

因为平面,平面,所以,,

,,,

所以,

,

所以,

故异面直线所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1ρ2cosθ

(1)求C1C2交点的直角坐标;

(2)若直线l与曲线C1C2分别相交于异于原点的点MN,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,是等边三角形,是线段的中点,是线段上靠近的四等分点,平面平面.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知. 对于函数,若存在常数,使得,不等式都成立,则称直线是函数的分界线.

1)讨论函数的单调性;

2)当时,试探究函数是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:

得分

频数

25

150

200

250

225

100

50

1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①;②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测从今年(年)起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预计在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数).

1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

2)以上述预测,从今年起该企业至少经过多少年后,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 mn 是两条不同的直线,αβγ是三个不同的平面,下列命题中正确的是(

A.αβ βγ ,则αγ

B. mn ,则αβ

C. mn 是异面直线, mβ nα ,则αβ

D.平面α内有不共线的三点到平面 β的距离相等,则αβ

查看答案和解析>>

同步练习册答案