精英家教网 > 高中数学 > 题目详情
若x>0,y>0,且lgx+lgy=1,则
2
x
+
5
y
的最小值为(  )
A、
1
2
B、1
C、2
D、3
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:根据对数的基本运算,结合基本不等式即可得到结论.
解答: 解:∵lgx+lgy=1,
∴lgxy=1,且x>0,y>0,
即xy=10,
2
x
+
5
y
≥2
2
x
5
y
=2,
当且仅当
2
x
=
5
y
,即x=2,y=5时取等号,
故选:C.
点评:本题主要考查不等式的应用,利用对数的基本运算求出xy=10是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数fx)=tan(2x+
π
4
).
(1)求fx)的定义域与最小正周期;
(2)设α∈(0,
π
4
),若f(
α
2
=2cos 2α,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
b
x-1
-a(a∈R,a≠0),f′(3)=a-
1
2

(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)的定义域为R,若f(-x+1)=f(x+1),且f(1)=1,f(0)=0则f(4)+f(5)=(  )
A、2B、-1C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
100
+
y2
64
=1的两个焦点,P是椭圆上任意一点.
(1)求PF1•PF2的最大值.
(2)若∠F1PF2=
π
3
,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一坐标系中画出函数y=ax,y=x+a的图象,可能正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图程序框图(判断条件k≤20?),那么输出的S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)当m<
1
2
时,求集合B;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过直线4x+3y-1=0和x+2y+1=0的交点并且与直线x-2y-1=0垂直的直线方程.

查看答案和解析>>

同步练习册答案