精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.

【答案】解:(Ⅰ)∵anbn+1+bn+1=nbn . 当n=1时,a1b2+b2=b1
∵b1=1,b2=
∴a1=2,
又∵{an}是公差为3的等差数列,
∴an=3n﹣1,
(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn
即3bn+1=bn
即数列{bn}是以1为首项,以 为公比的等比数列,
∴{bn}的前n项和Sn= = (1﹣3n)=
【解析】(Ⅰ)令n=1,可得a1=2,结合{an}是公差为3的等差数列,可得{an}的通项公式;(Ⅱ)由(Ⅰ)可得:数列{bn}是以1为首项,以 为公比的等比数列,进而可得:{bn}的前n项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知t>0,函数f(x)= ,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 , 9是等比数列,则 =(
A.﹣
B.
C.±
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,{bn}是各项均为正数的等比数列,满足a1=b1=1,b2﹣a3=2b3 , a3﹣2b2=﹣1
(1)求数列{an}和{bn}的通项公式
(2)设cn=an+bn , n∈N* , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB. (Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 , 定义使f(1)f(2)f(3)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,2013]内这样的企盼数共有 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通项公式;
(II)求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=acosx+b的最大值为1,最小值为﹣3,试确定 的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log cos( ﹣2x)的递增区间是 (
A.[﹣ +kπ, +kπ](k∈Z)
B.[﹣ +kπ,kπ)(k∈Z)
C.[ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ)(k∈Z)

查看答案和解析>>

同步练习册答案