精英家教网 > 高中数学 > 题目详情
7.某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在如图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:
(1)按此规律,n=5时果树数量及松树数量分别为多少;并写出果树数量an,及松树数量bn关于n的表达式.
(2)定义:f(n+1)-f(n)(n∈N*)为f(n)增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由.

分析 (1)由题意知,n=1时,果树1棵,松树9-1=8棵,n=2时,果树4棵,松树25-9=16棵,从而类比可得n=5时,果树25棵,松树121-81=40棵;从而可得${a_n}={n^2}$,bn=8n;
(2)化简${a_{n+1}}-{a_n}={({n+1})^2}-{n^2}=2n+1$,bn+1-bn=8(n+1)-8n=8,从而判断.

解答 解:(1)由题意知,
n=1时,果树1棵,松树9-1=8棵,
n=2时,果树4棵,松树25-9=16棵,
n=3时,果树9棵,松树49-25=24棵,
n=4时,果树16棵,松树81-49=32棵,
n=5时,果树25棵,松树121-81=40棵;
故${a_n}={n^2}$,bn=8n;
(2)${a_{n+1}}-{a_n}={({n+1})^2}-{n^2}=2n+1$,
bn+1-bn=8(n+1)-8n=8,
当n≤3时,2n+1<8,松树增加的速度快;
当n≥4时,2n+1>8,果树增加的速度快.

点评 本题考查了数列的应用及数列的增长速度的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=a{x^3}-bx+\frac{c}{x}+2.f(-2)=7,则f(2)$=(  )
A.5B.-7C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于数列{an},称P(ak)=$\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)已知等差数列{an}的公差为d,且a1>0,d>0,其前n项和记为Sn,试计算:Cn2P(S2)+Cn3P(S3)+…+CnnP(Sn)(n≥2,n∈N);
(3)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若数a1,a2,a3,a4,a5的标准差为2,则数3a1-2,3a2-2,3a3-2,3a4-2,3a5-2的方差为36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如表示采集的商品零售额(万元)与商品流通费率的一组数据:
 商品零售额 9.511.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 
 商品流通费率 6.0 4.6 4.0 3.22.8 2.5 2.4 2.3 2.2 2.1 
(1)将商品零售额作为横坐标,商品流通费率作为纵坐标,在平面直角坐标系内作出散点图;
(2)商品零售额与商品流通费率具有线性相关关系吗?如果商品零售额是20万元,那么能否预测此时流通费率是多少呢?(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一束光线从点P(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上一点的最长路程是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{6}$C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{4-{x}^{2}}$+lg(x2-x-2)的定义域为{x|-2≤x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}{2x+a,x<1}\\{-x-2a,x≥1}\end{array}\right.$,若f(1-a)=f(1+a),则以直线x=a为准线的抛物线的标准方程是y2=-6x.

查看答案和解析>>

同步练习册答案