精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinx,1), = ,函数f(x)= 的最大值为6.
(1)求A;
(2)将函数f(x)的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

【答案】
(1)解:f(x)= = Asinxcosx+ cos2x

=A( sin2x+ cos2x)

=Asin(2x+ ),

∵函数f(x)= 的最大值为6,

∴A=6


(2)解:f(x)=6sin(2x+ y=6sin(2(x+ )+ )=6sin(2x+

y=6sin(4x+ ),

则g(x)=6sin(4x+ ),

∵0≤x≤

∴0≤4x≤

≤4x+

∴- ≤sin(4x+ )≤1,

∴﹣3≤6sin(4x+ )≤6,

即g(x)在[0, ]上的值域为[﹣3,6]


【解析】(1)化f(x)= = Asinxcosx+ cos2x=A( sin2x+ cos2x)=Asin(2x+ ),从而求A;(2)由图象变换得到g(x)=6sin(4x+ ),从而求函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系.曲线C的极坐标方程为ρ=2cosθ.

(1)求直线l的普通方程与曲线C的直角坐标方程

(2)求出直线l与曲线C相交后的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线上;数列是等差数列,且,它的前9项和为153.

(1)求数列的通项公式;

(2)设,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两曲线f(x)=cosx,g(x)= sinx,x∈(0, )相交于点A.若两曲线在点A处的切线与x轴分别相交于B,C两点,则线段BC的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角所在平面外一点,且为斜边的中点.

(1)求证:平面

(2)若,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系为极点 轴正半轴为极轴建立极坐标系的极坐标方程为直线的参数方程为为参数),直线和圆交于两点 是圆上不同于的任意一点

(1)求圆心的极坐标;

(2)求点到直线的距离的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学校本课程开设了A、B、C、D4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:

(Ⅰ)求这3名学生选修课所有选法的总数;

(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;

(Ⅲ)求A选修课被这3名学生选择的人数的分布列 .

查看答案和解析>>

同步练习册答案