精英家教网 > 高中数学 > 题目详情

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

(1);(2) ;(3)见解析.

解析试题分析:(1)先有已知条件写出的解析式,然后求导,根据导数与函数极值的关系得到,解得的值;(2)由构造函数,则上恰有两个不同的实数根等价于恰有两个不同实数根,对函数求导,根据函数的单调性与导数的关系找到函数的单调区间,再由零点的存在性定理得到,解不等式组即可;(3) 证明不等式,即是证明.对函数求导,利用导数研究函数的单调性,找到其在区间上的最大值,则有成立,那么不等式成立,利用二次函数的图像与性质可得的单调性与最小值,根据,那么,所给不等式得证.
试题解析:(1) 由题意知,   2分
时, 取得极值,∴,故,解得
经检验符合题意.                                                       4分
(2)由
 ,得,                          5分

上恰有两个不同的实数根等价于恰有两个不同实数根. ,         7分
时,,于是上单调递增;
时,,于是上单调递减.依题意有
,即, .9分
(3) 的定义域为,由(1)知
得, (舍去),                 11分
∴当时,单调递增;
时,单调递减.  ∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求f(x)的单调区间及极值;
(II)若关于x的不等式恒成立,求实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若直线与曲线上有公共点,求的取值范围.

查看答案和解析>>

同步练习册答案