精英家教网 > 高中数学 > 题目详情
20.下列函数中,在定义域内既是奇函数又是增函数的是(  )
A.y=sinx+1B.y=$\frac{1}{x}$C.y=x2D.y=x|x|

分析 根据函数奇偶性和单调性的定义和性质进行判断即可.

解答 解:y=sinx+1为非奇非偶函数,不满足条件.
y=$\frac{1}{x}$是奇函数,则定义域(-∞,0)∪(0,+∞)上不是单调函数,不满足条件.
y=x2是偶函数,不满足条件.
y=x|x|=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$,则函数是奇函数,且在定义域上是增函数,满足条件.
故选:D.

点评 本题主要考查函数单调性和奇偶性的判断,利用函数奇偶性和单调性的定义函数性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某城市的夏季室外温度y(℃)的波动近似地按照规则$y=27+10sin({\frac{π}{12}t+π})$,其中t(h)是从某日0点开始计算的时间,且t≤24.
(1)若在t0(h)(t0≤6)时的该城市室外温度为22°C,求在t0+8(h)时的城市室外温度;
(2)某名运动员要在这个时候到该城市参加一项比赛,比赛在当天的10时至16时进行,而该运动员一旦到室外温度超过36°C的地方就会影响正常发挥,试问该运动员会不会因为气温影响而不能正常发挥?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$的图象过坐标原点O,且在(-1,f(-1))处
的切线的斜率是-5.
(Ⅰ)求实b、c的值;
(Ⅱ)f(x)在区[-1,2]上的最大值;
(Ⅲ)对任意给定的正实a,曲y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点y轴上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α终边上一点$P({-3,b}),sinα=\frac{b}{5}$.
(1)求tanα的值;
(2)设$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$,试求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)满足:当f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}\\ f(x+1)\end{array}\right.{,^{\;}}$$\begin{array}{l}x≥4\\ \\ x<4\end{array}$,则f(2+log23)=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an},满足a3=7,a5+a7=26.
(Ⅰ)求数列{an}的通项an
(Ⅱ)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的前n项和为Sn,a1=-11,a5+a6=-4,Sn取得最小值时n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求异面直线AD1与BD所成的角
(2)求证:C1O∥面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学从高三男生中随机抽取100名学生的身高,将数据整理,得到的频率分布表如下所示.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00

查看答案和解析>>

同步练习册答案