精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=ln(x2﹣x)的定义域为(  )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

【答案】C
【解析】解:要使函数有意义,则x2﹣x>0,即x>1或x<0,
故函数的定义域为(﹣∞,0)∪(1,+∞),
故选:C
【考点精析】本题主要考查了函数的定义域及其求法的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.

(1)补全上述列联表;

(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为平行四边形,平面平面 ,.

(Ⅰ)求证:

(Ⅱ)若三角形是边长为的等边三角形,求三棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC(国际电工委员会)风能风区的分类标准如下:

风能分类

一类风区

二类风区

平均风速m/s

8.5---10

6.5---8.5

某公司计划用不超过100万元的资金投资于A、B两个小型风能发电项目.调研结果是:未来一年内,位于一类风区的A项目获利%的可能性为0.6,亏损%的可能性为0.4;

B项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.

假设投资A项目的资金为)万元,投资B项目资金为)万元,且公司要求对A项目的投资不得低于B项目.

(Ⅰ)记投资A,B项目的利润分别为,试写出随机变量的分布列和期望 ;

(Ⅱ)根据以上的条件和市场调研,试估计一年后两个项目的平均利润之和 的最大值,并据此给出公司分配投资金额建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中正确的个数是( ) (1.)若x∈R,则x2+ ≥x;
(2.)若x≠kπ,k∈Z,则sinx+ ≥2;
(3.)设x,y>0,则 的最小值为8;
(4.)设x>1,则x+ 的最小值为3.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+y﹣4=0,定点P(2,0),E,F分别是直线l和y轴上的动点,则△PEF的周长的最小值为(  )
A.2
B.6
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).
(1)若a= ,求一天中哪个时刻该市的空气污染指数最低;
(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?

查看答案和解析>>

同步练习册答案