精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
11-x2

(1)讨论函数f(x)的性质(定义域,奇偶性,单调性(不要求证明));
(2)根据函数f(x)的性质画出y=f(x)的图象(草图);
(3)判断f(-2-a2)与f(a2+1)(其中a∈R,且a≠0)的大小,并说明理由.
分析:(1)根据使函数的解析式有意义的原则,可以得到函数的定义域,根据函数奇偶性的定义,可以判断函数的奇偶性,根据复合函数同增异减的原则,可以判断出函数的单调性.
(2)根据(1)中函数的性质,我们易画出y=f(x)的图象(草图);
(3)根据函数的奇偶性,我们可得f(-2-a2)=f(a2+2),再根据函数的单调性,分析两个自变量的大小,即可得到答案.
解答:解:(1)函数f(x)的定义域为:(-∞,-1)∪(-1,1)∪(1,+∞)精英家教网
函数f(x)为偶函数,
函数f(x)在区间(-∞,-1),[0,1)上为增函数,
在区间(-1,0],(1,+∞)上为减函数
(2)由(1)中函数的性质,可得y=f(x)的图象如图所示:
(3)∵函数f(x)为偶函数
∴f(-2-a2)=f(a2+2)
又∵f(x)在区间(1,+∞)上为增函数,且a2+2>a2+1≥1
∴f(a2+2)>f(a2+1)
即f(-2-a2)>f(a2+1)
点评:本题考查的知识点是奇偶性与单调性的综合,同时也考查了函数的定义域,图象等,是函数图象和性质的综合考查,熟练掌握基本初等函数的性质和复合函数性质的处理方法,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案