精英家教网 > 高中数学 > 题目详情
11.已知$f(x)=\left\{\begin{array}{l}2{x^2}-8ax+3,x<1\\{a^x}-a,x≥1\end{array}\right.$是R上的单调递减函数,则实数a的取值范围为$[{\frac{1}{2},\frac{5}{8}}]$.

分析 由条件利用函数的单调性的性质可得$\left\{\begin{array}{l}{2a≥1}\\{0<a<1}\\{a-a≤2-8a+3}\end{array}\right.$,由此求得实数a的取值范围.

解答 解:由于已知$f(x)=\left\{\begin{array}{l}2{x^2}-8ax+3,x<1\\{a^x}-a,x≥1\end{array}\right.$是R上的单调递减函数,故有$\left\{\begin{array}{l}{2a≥1}\\{0<a<1}\\{a-a≤2-8a+3}\end{array}\right.$,
求得$\frac{1}{2}$≤a≤$\frac{5}{8}$,
故答案为:$[{\frac{1}{2},\frac{5}{8}}]$.

点评 本题主要考查函数的单调性的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.坐标系与参数方程在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}{x=1+\sqrt{5}cosφ}\\{y=\sqrt{5}sinφ}\end{array}\right.$(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)求曲线θ=$\frac{π}{4}$与圆C的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各曲线的标准方程
(1)椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$,求椭圆的标准方程;
(2)已知双曲线过点(4,$\sqrt{3}$),且渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.与直线4x-3y-2=0垂直且点(1,0)到它的距离为1的直线是3x+4y+2=0或3x+4y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=ax3+bx2+cx+d是实数集R上的偶函数,并且f(x)<0的解为(-2,2),则$\frac{d}{b}$的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.2log510+log51.25=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(三位整数,单位:cm),获得数据的茎叶图如图.现从两班高于175cm的所有同学中任选两人,则至少有一人来自甲班的概率为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在(0,+∞)上是减函数的是(  )
A.y=$\frac{1}{x}$B.y=x2+1C.y=2xD.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是奇函数,又在区间(0,+∞)上为增函数的是(  )
A.y=lnxB.y=x3C.y=3xD.y=sinx

查看答案和解析>>

同步练习册答案