精英家教网 > 高中数学 > 题目详情
9.已知等比数列{an}的各项均为正数,且a2=2,a4=8,则S6=63.

分析 利用等比数列的通项公式与求和公式即可得出.

解答 解:设等比数列{an}的公比为q>0,∵a2=2,a4=8,
∴2q2=8,解得q=2.
2a1=2,解得a1=1.
则S6=$\frac{{2}^{6}-1}{2-1}$=63.
故答案为:63.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知λ=${∫}_{0}^{3}$x2dx,数列{an}是各项均为正数的等比数列,则$\frac{{a}_{4}+λ{a}_{2}}{{a}_{3}}$的最小值为(  )
A.2$\sqrt{3}$B.2C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则数列{an}的通项公式an=$\left\{\begin{array}{l}{1,n=1}\\{3×{4}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{{\begin{array}{l}{({a-2})x+3,x≤1}\\{\frac{2a}{x},x>1}\end{array}}\right.$在(-∞,+∞)上是减函数,则a的取值范围为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是(  )
A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1的左、右焦点分别为F1,F2,若双曲线上一点P满足∠F1PF2=60°,则△F1PF2的面积为(  )
A.$9\sqrt{3}$B.9C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正项等比数列{an}中,lga3+lga6+lga9=3,则a1a11的值是100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(k-x)ex-x-3.
(1)当k=1时,求f(x)在(0,f(0))处的切线方程;
(2)若f(x)<0对任意x>0恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.各项均为正数的等比数列{an}满足a3、a5、a6成等差数列,则$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=1或$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步练习册答案