精英家教网 > 高中数学 > 题目详情
5.下列命题:
①分别在两个平面内的两条直线是异面直线;
②和两条异面直线都垂直的直线有且仅有一条;
③和两条异面直线都相交的两条直线异面或相交;
④若a与b是异面直线,b与c是异面直线,则a与c也异面.
其中真命题的个数是1.

分析 利用异面直线的定义与性质即可判断出.

解答 解:①分别在两个平面内的两条直线不一定是异面直线,因此不正确;
②和两条异面直线都垂直的直线有无数条,因此不正确,可举例正方体中相互异面直线的棱;
③和两条异面直线都相交的两条直线异面或相交,正确;
④若a与b是异面直线,b与c是异面直线,则a与c不一定是异面直线,不正确.
其中真命题的个数是 1.
故答案为:1.

点评 本题考查了异面直线的定义与性质、简易逻辑的判定方法,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点P(-1,1)的直线l上的动点Q到原点的最短距离为$\sqrt{2}$
(1)求直线l的方程;
(2)若曲线C1和直线l交于M,N两点,且以MN为直径的圆过坐标原点O,当S△OMN=$\frac{2\sqrt{10}}{3}$时,求曲线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,D,E分别是BC和CC1的中点,已知AB=AC=AA1=4,∠BAC=90°.
(Ⅰ) 求证:B1D⊥平面AED;
(Ⅱ) 求二面角B1-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等差数列{an}的公差是d,其前项和是Sn,若a1=d=1,则$\frac{{S}_{n}+8}{{a}_{n}}$的最小值是(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.2$\sqrt{2}$+$\frac{1}{2}$D.2$\sqrt{2}$-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的首项为a1=1,且满足对任意的n∈N+,都有an+1-an=2n成立,则a10=1023.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x∈{1,2,x2},则有(  )
A.x=1B.x=1或x=2C.x=0或x=2D.x=0或x=1或x=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2-2ax+3-b(a≠0)在[1,3]有最大值5和最小值2,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在图中,二次函数y=bx2+ax与指数函数y=($\frac{a}{b}$)x的图象只可为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若图中,PA切⊙O于点A,PCB交⊙O于C、B两点,且PCB过点O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案