精英家教网 > 高中数学 > 题目详情

设极点O到直线l的距离为d,由点O向直线l作垂线,由极轴到垂线OA的角度为α(如图所示).求直线l的极坐标方程.

答案:略
解析:

解:在直线l上任取一点M(ρθ).在直角三角形OMA中,用三角知识得ρcos(αθ)=d,即

这就是直线l的极坐标方程.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一个顶点为M(0,1),离心率e=
6
3

(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l1:y=2x与直线l2:x+y=3交于P点.
(1)当直线l过P点,且与直线l0:2x+y=0平行时,求直线l的方程.
(2)当直线l过P点,且原点O到直线l的距离为1时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳模拟)已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的长半轴是短半轴的
3
倍,直线x-y+
2
=0
经过
椭圆C的一个焦点.
(1)求椭圆C的方程;
(2)设一条直线 l与椭圆C交于A、B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案