精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,上、下顶点分别为,若,点关于直线的对称点在椭圆.

1)求椭圆的方程与离心率;

2)过点做直线与椭圆相交于两个不同的点;若恒成立,求实数的取值范围.

【答案】1 2.

【解析】

1)根据,得到,得到点关于直线的对称点,代入椭圆方程,求出,再得到,从而得到椭圆的标准方程和离心率;

(2)当直线斜率不存在时,得到,直线斜率存在时,设为,与椭圆联立,得到的范围和,从而表示出,得到其范围,再得到的取值范围.

1)因为,故,故椭圆

关于直线的对称点为

代入椭圆中,得

解得

所以

所以椭圆的方程为,离心率

2)当直线的斜率不存在时,,所以

当直线的斜率存在时,设直线的方程为

联立,消去整理得

,可得

所以

所以

因为恒成立,

所以

即实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将正方体ABCDA1B1C1D1沿三角形A1BC1所在平面削去一角可得到如图所示的几何体.

1)连结BD,BD1,证明:平面BDD1⊥平面A1BC1;

2)已知P,Q,R分别是正方形ABCDCDD1C1ADD1A1的中心(即对角线交点),证明:平面PQR∥平面A1BC1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成书于公元一世纪的我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,题目是:“今有池方一丈,点生其中央,出水一尺,引葭赶岸,适马岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈(10尺),有棵芦苇长在它的正中央,高出水面部分有1尺长,把芦苇拉向岸边,恰好碰到沿岸(池塘一边的中点),则水深为__________尺,芦苇长__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A是圆Ox2+y24上一动点,过点AABx轴,垂足为B,动点D满足.

1)求动点D的轨迹C的方程;

2)垂直于x轴的直线M交轨迹CMN两点,点P30),直线PM与轨迹C的另一个交点为Q.问:直线NQ是否过一定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线的斜率为,求函数上的最小值;

2)若关于的方程上有两个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.

1)到今年为止,该森林已砍伐了多少年?

2)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小.

1)求点的轨迹的方程;

2)过点任意作互相垂直的两条直线,分别交曲线于点.设线段的中点分别为,求证:直线恒过一个定点;

3)在(2)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是( )

A.”是“”的充分不必要条件

B.函数的最小值为2

C.时,命题“若,则”为真命题

D.命题“”的否定是“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系中, 为极点,半径为2的圆的圆心坐标为.

1)求圆的极坐标方程;

2)设直角坐标系的原点与极点重合, 轴非负关轴与极轴重合,直线的参数方程为为参数),由直线上的点向圆引切线,求切线长的最小值.

查看答案和解析>>

同步练习册答案