已知向量m=(,),n=(,),记f(x)=m•n;
(1)若f(x)=1,求的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
科目:高中数学 来源: 题型:
(09年临沂一模理)(12分)
已知向量m=(,1),n=(,)。
(I) 若m•n=1,求的值;
(II) 记f(x)=m•n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足
(2a-c)cosB=bcosC,求函数f(A)的取值范围。
查看答案和解析>>
科目:高中数学 来源:2015届广东省高一暑假作业(六)必修4数学试卷(解析版) 题型:解答题
已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三适应性考试理科数学试卷(解析版) 题型:解答题
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三适应性考试文科数学试卷(解析版) 题型:解答题
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省长沙市高三第六次月考理科数学卷 题型:解答题
(本小题满分12分)
已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.
(1)若f(x)=1,求cos(-x)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+c=b,求函数f(B)的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com