精英家教网 > 高中数学 > 题目详情

 

已知向量m=(),n=(),记f(x)=m•n;

   (1)若f(x)=1,求的值;

   (2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函

        数f(A)的取值范围.

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)f(x)=m•n===

      ∵f(x)=1,      ∴,              (…………4分)

      ∴=.            (…………6分)

    (2)∵(2a-c)cosB=bcosC,∴由正弦定理得

     ∴,∴

,∴,且

   ;                      (…………10分)

,  ∴ 

又∵f(x)=,∴f(A)=,(…………12分)

故函数f(A)的取值范围是(1,).               (…………14分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年临沂一模理)(12分)

已知向量m=(,1),n=()。

(I)                   若mn=1,求的值;

(II)               记f(x)=mn,在△ABC中,角A,B,C的对边分别是a,b,c,且满足

(2a-c)cosB=bcosC,求函数f(A)的取值范围。

查看答案和解析>>

科目:高中数学 来源:2015届广东省高一暑假作业(六)必修4数学试卷(解析版) 题型:解答题

已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角.

(1)求角A的大小;

(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三适应性考试理科数学试卷(解析版) 题型:解答题

已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n

(1)求 f(x)的解析式,并求最小正周期.

(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三适应性考试文科数学试卷(解析版) 题型:解答题

已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n

(1)求 f(x)的解析式,并求最小正周期.

(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省长沙市高三第六次月考理科数学卷 题型:解答题

(本小题满分12分)

已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.

(1)若f(x)=1,求cos(-x)的值;

(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+c=b,求函数f(B)的取值范围.

 

查看答案和解析>>

同步练习册答案