精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,直线与曲线相交于点,求的值.

【答案】(Ⅰ)直线的普通方程为:,曲线的直角坐标方程为:;(Ⅱ)4

【解析】

(Ⅰ)使用代入法消参,可得直线的普通方程,根据,结合二倍角的余弦公式,可得曲线的直角坐标方程

(Ⅱ)写出直线参数方程的标准形式,然后联立曲线的方程,可得关于参数的一元二次方程,根据的几何意义,可得结果.

(Ⅰ)由为参数),所以

则直线的普通方程为:

,所以

,所以

则曲线的直角坐标方程为:

(Ⅱ)由(Ⅰ)可知:

直线参数方程标准形式为:为参数)

将该方程代入曲线的直角坐标方程

化简可得:

设点所对应的参数分别为

所以,则

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中,,且

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列的前项和为,求满足的所有正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由甲乙两位同学组成一个小组参加年级组织的篮球投篮比赛,共进行两轮投篮,每轮甲乙各自独立投篮一次,并且相互不受影响,每次投中得2分,没投中得0.已知甲同学每次投中的概率为,乙同学每次投中的概率为

1)求第一轮投篮时,甲乙两位同学中至少有一人投中的概率;

2)甲乙两位同学在两轮投篮中,记总得分为随机变量ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,侧面为等边三角形.

(Ⅰ)证明:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中,平面底面ABCD,底面ABCD是等腰梯形,.

1)证明:.

2)求平面PCD与平面PAB夹角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则不总相等不相等的(

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角中,分别是上一点,且满足平分,以为折痕将折起,使点到达点的位置,且平面平面.

1)证明:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,焦距为2,直线与椭圆交于两点.

1)求椭圆的标准方程;

2)若直线过椭圆的右焦点,且,求直线方程;

3)设为坐标原点,直线的斜率分别为,若,求面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程恰有5个不同的实数根,则实数a的取值范围________.

查看答案和解析>>

同步练习册答案