精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱台的底面是正三角形,平面平面.

(Ⅰ)求证:

(Ⅱ)若和梯形的面积都等于,求三棱锥的体积.

【答案】I)证明见解析;(II.

【解析】

(Ⅰ)取的中点为,连结,可证明四边形为平行四边形,得,由等腰三角形的性质得,可得,由面面垂直的性质可得平面,从而可得结果;(Ⅱ)由三棱台的底面是正三角形,且,可得,由此.根据面积相等求得棱锥的高,利用棱锥的体积公式可得结果.

(Ⅰ)取的中点为,连结.

是三棱台得,平面平面,∴.

∴四边形为平行四边形,∴.

的中点,

,∴.

∵平面平面,且交线为平面

平面,而平面

.

(Ⅱ)∵三棱台的底面是正三角形,且

,∴

.

由(Ⅰ)知,平面.

∵正的面积等于,∴.

∵直角梯形的面积等于

,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年来,“精准扶贫”是政府的重点工作之一,某地政府对240户贫困家庭给予政府资金扶助,以发展个体经济,提高家庭的生活水平.几年后,一机构对这些贫困家庭进行回访调查,得到政府扶贫资金数、扶贫贫困家庭数(户)与扶贫后脱贫家庭数(户)的数据关系如下:

政府扶贫资金数(万元)

3

5

7

9

政府扶贫贫困家庭数(户)

20

40

80

100

扶贫后脱贫家庭数(户)

10

30

70

90

(Ⅰ)求几年来该地依靠“精准扶贫”政策的脱贫率是多少;(答案精准到0.1%)

(Ⅱ)从政府扶贫资金数为3万元和7万元并且扶贫后脱贫的家庭中按分层抽样抽取8户,再从这8户中随机抽取两户家庭,求这两户家庭的政府扶贫资金总和为10万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1各条棱长均为4,且AA1⊥平面ABCDAA1的中点,MN分别在线段BB1和线段CC1上,且B1M3BMCN3C1N

1)证明:平面DMN⊥平面BB1C1C

2)求三棱锥B1DMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足不等式组,则的最大值为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;

附:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)的普通方程和直线的倾斜角;

(2)设点交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一家商店使用一架两臂不等长的天平称黄金,一位顾客到店里购买黄金,售货员先将的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金是小于,等于,还是大于?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地日到日均值(单位:)的统计数据,则下列叙述不正确的是(

A.日到日,日均值逐渐降低

B.天的日均值的中位数是

C.天中日均值的平均数是

D.从这天的日均监测数据中随机抽出一天的数据,空气质量为一级的概率是

查看答案和解析>>

同步练习册答案