精英家教网 > 高中数学 > 题目详情

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

(1)主要是考查了反证法的运用,先反设,在推理论证得到矛盾,得出结论。
(2)运用数学归纳法的两步骤来加以证明即可。

解析试题分析:  解:(1)假设,代入可得:对任意恒成立,故必有,但由题设知,故不可能为正比例函数.  5分
(2)由,可得:    7分
时:显然有成立.
假设当时,仍然有成立.则当时,
由原式整理可得:=  .  9分
,故  .  11分
成立.综上可得:对任意的,均有.  .  12分
考点:反证法和数学归纳法
点评:主要是考查了反证法以及数学归纳法的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
⑴求的取值范围;
⑵当取最大值时,解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[)时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)当时,函数恒成立,求实数的取值范围;
(3)设正实数满足.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,若上为增函数,则称 为“一阶比增函数”.
(Ⅰ) 若是“一阶比增函数”,求实数的取值范围;
(Ⅱ) 若是“一阶比增函数”,求证:
(Ⅲ)若是“一阶比增函数”,且有零点,求证:有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求的取值范围。

查看答案和解析>>

同步练习册答案