精英家教网 > 高中数学 > 题目详情
18.求g(x)=(3-x)•(2x-1)($\frac{1}{2}<x<3$)的最大值.

分析 判断二次函数的开口方向,求出对称轴,然后求解最大值.

解答 解:g(x)=(3-x)•(2x-1)=-2x2+7x-3,开口向下,
对称轴为:x=$\frac{7}{4}$,
函数的最大值为:(3-$\frac{7}{4}$)•(2×$\frac{7}{4}$-1)=$\frac{25}{8}$.

点评 本题考查二次函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点,
则正确的判断是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x1,x2是方程4x2-(3m-5)x-6m2=0的两根,且|$\frac{{x}_{1}}{{x}_{2}}$|=$\frac{3}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+2(a+1)x+a,x∈[-2,3].
(1)当a=-2时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)的区间[-2,3]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=log2(x2+2x-3)的单调递减区间为(  )
A.(-∞,-3)B.(-∞,-1)C.(1,+∞)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等差数列{an}的通项公式是an=2n+1,由bn=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$(n∈N*)确定的{bn}的前n项和是$\frac{{n}^{2}+5n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A={(x,y)|x+y<3且|x|<2,x∈Z,y∈N+},B={0,1,2},f:(x+y)→x+y,判断f是否为A到B的映射.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(Ⅰ)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(Ⅱ)求证:当x>1时,f(x)>$\frac{2}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=f(x)的定义域是[1,4],则函数y=f(x+1)的定义域是[0,3].

查看答案和解析>>

同步练习册答案