精英家教网 > 高中数学 > 题目详情
已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.
(1)设B(x1,y1),C(x2,y2),
x12=4y1x22=4y2
∴kAB-kBC+kCA=
y1
x1
-
y2-y1
x2-x1
+
y2
x2
=
1
4
x1
-
1
4
(x1+x2)
+
1
4
x2
=0;
(2)①研究△PBC,
kPB-kBC+kCP=
yB-yP
xB-xP
-
yC-yB
xC-xB
+
yP-yC
xP-xC
=
xP+xB
4
-
xB+xC
4
+
xC+xP
4
=
xP
2
=1;
②研究四边形PBCD,
kPB-kBC+kCD-kDP=
xP+xB
4
-
xB+xC
4
+
xC+xD
4
-
xD+xP
4
=0;
③研究五边形PBCDE,
kPB-kBC+kCD-kDE+kEP=
xP+xB
4
-
xB+xC
4
+
xC+xD
4
-
xD+xE
4
+
xE+xP
4
=
xP
2
=1;
④研究n=2k边形P1P2…P2k(k∈N,k≥2),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)2k-1kP2kP1=0,
证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)2k-1
1
4
(xP2k +xP1)
=
xP1
4
[1+(-1)2k-1]
=
1+(-1)2k-1
2
=0=右边;
⑤研究n=2k-1边形P1P2…P2k-1(k∈N,k≥2),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)2k-2kP2k-1P1=1,
证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)2k-1-1
1
4
(xP2k-1+xP1)
=
xP1
4
[1+(-1)2k-1-1]
=
1+(-1)2k-1-1
2
=1=右边;
⑥研究n边形P1P2…Pn(k∈N,k≥3),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)n-1kPnP1=
1+(-1)n-1
2

证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)n-1
1
4
(xPn+xP1)
=
xP1
4
[1+(-1)n-1]=
1+(-1)n-1
2
=右边.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|=
2
|AF|,则△AFK的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海)已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)试探究抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年上海市春季高考数学试卷(解析版) 题型:解答题

已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.

查看答案和解析>>

同步练习册答案