精英家教网 > 高中数学 > 题目详情

【题目】已知数列的各项均为整数,其前n项和为.规定:若数列满足前r项依次成公差为1的等差数列,从第项起往后依次成公比为2的等比数列,则称数列为“r关联数列”.

(1)若数列为“6关联数列”,求数列的通项公式;

(2)在(1)的条件下,求出,并证明:对任意

3)若数列为“6关联数列”,当,之间插入n个数,使这个数组成一个公差为的等差数列,求,并探究在数列中是否存在三项其中mkp成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

【答案】(1)

(2),证明见解析

(3),不存在,理由见解析

【解析】

1)根据题意得到,且.解得即可求出的通项公式.

(2)由(1)得,利用换元法证明数列的最小项为,即可证明对任意.

3)由(1)可知,当时,,由此可得出.假设在数列中存在三项(其中成等差数列)成等比数列,则,推导出故,这与题设矛盾,所以在数列中不存在三项(其中成等差数列)成等比数列.

(1)∵为“6关联数列”,

前6项为等差数列,从第5项起为等比数列.

,且.

,解得.

.

(2)由(1)得.

可见数列的最小项为.

由列举法知:当时,

时,),

,则

(3)由(1)可知,当时,

因为:.

故:.

假设在数列中存在三项(其中成等差数列)成等比数列,

则:,即:

(*)

因为成等差数列,所以

(*)式可以化简为

即:,故,这与题设矛盾.

所以在数列中不存在三项(其中成等差数列)成等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,,平面平面为棱上一点(不与重合),平面交棱于点.

1)求证:

2)若二面角的余弦值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.

1)求椭圆C的方程;

2)若直线l垂直于x轴,且具有性质H,求直线l的方程;

3)求证:在椭圆C上不存在三个不同的点PQR,使得直线都具有性质H.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某沿海城市的海边有两条相互垂直的直线型公路l1、l2,海岸边界MPN近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB,且直线AB与曲线MPN有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段MPN是函数图象的一段,点M到l1、l2的距离分别为8千米和1千米,点N到l2的距离为10千米,以l1、l2分别为x、y轴建立如图所示的平面直角坐标系xOy,设点P的横坐标为p.

(1)求曲线段MPN的函数关系式,并指出其定义域;

(2)若某人从点O沿公路至点P观景,要使得沿折线OAP比沿折线OBP的路程更近,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的两个函数,满足 满足,且当时,.若在区间上,关于的方程8个不同的实数根,则k的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)已知函数时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在很多重大场合都提出大众创业,万众创新.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.

1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)

2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并写出取得最大值时x的集合;

2)将fx)的函数图象向左平移φφ0)个单位后得到的函数gx)是偶函数,求φ的最小值.

查看答案和解析>>

同步练习册答案