精英家教网 > 高中数学 > 题目详情
函数f(x)=x2-2ax+1有两个零点,且分别在(0,1)与(1,2)内,则实数a的取值范围是( )
A.-1<a<1
B.a<-1或a>1
C.
D.
【答案】分析:由题意可得f(0)×f(1)<0,f(1)×f(2)<0,解得实数a的取值范围,可得答案.
解答:解:由题意可得:
f(0)×f(1)<0,
且f(1)×f(2)<0,
即:
解得 
故选C.
点评:本题考查函数的零点与方程的根的关系,得到f(0)×f(1)<0,f(1)×f(2)<0,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案