精英家教网 > 高中数学 > 题目详情

【题目】为了解喜好体育运动是否与性别有关,某报记者随机采访50个路人,将调查情况进行整理后制成下表:

年龄(岁)

[15,25)

[25,35)

[35,45)
15

[45,55)

[55,65)

[65,75)

频数

5

10

8

10

5

5

喜好人数

4

6

6

3

3


(1)在调查的结果中,喜好体育运动的女性有10人,不喜好体育运动的男性有5人,请将下面的2×2列联表补充完整,并判断能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

50


(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不喜好体育运动的人数为X,求随机变量X的分布列和数学期望. 下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

【答案】
(1)解:根据频率分布表知,喜好体育运动的人数为30,则不喜好体育运动的人数为20,

填写2×2列联表如下:

喜好体育运动

不喜好体育运动

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

根据列联表中数据,计算

K2= = =3<7.879,

对照临界值知,在犯错误的概率不超过0.005的前提下,不能认为喜好体育运动与性别有关;


(2)解:从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,

记选中的4人中不喜好体育运动的人数为X,

依题意得X=0,1,2,3,

P(X=0)= =

P(X=1)= + =

P(X=2)= + =

P(X=3)= =

∴X的分布列是:

X

0

1

2

3

P

∴X的数学期望EX=0× +1× +2× +3× =


【解析】(1)根据频率分布表,计算喜好体育运动和不喜好体育运动的人数,填写列联表,计算K2,对照临界值得出结论;(2)根据题意知随机变量X的可能取值,计算对应的概率值,写出分布列,计算数学期望值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x)满足f(x)﹣f(﹣x)=2x3 , 当x∈(﹣∞,0]时f'(x)<3x2 , 实数a满足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )

A. 289 B. 1 024

C. 1 225 D. 1 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C1的参数方程为 (t为参数),在极坐标系(以坐标原点O为极点,x轴的正半轴为极轴)中,曲线C2的方程为ρsin2θ=2pcosθ(p>0),曲线C1、C2交于A、B两点.
(Ⅰ)若p=2且定点P(0,﹣4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(3 a)≥2f(﹣1),则实数a的取值范围是(
A.[2,4]
B.[ ,2]
C.[ ,4]
D.[ ,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是 (t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中,含有编号为3的球的概率;
(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知扇形的周长为30,当它的半径R和圆心角α各取何值时,扇形的面积S最大?并求出扇形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场共有土地50亩,这些地可种西瓜、棉花、玉米.这些农作物每亩地所需劳力和预计产值如下表.若该农场有20名劳动力,应怎样计划才能使每亩地都能种上作物(玉米必种),所有劳动力都被安排工作(每名劳动力只能种植一种作物)且作物预计总产值达最高?

作物

劳力/

产值/

西瓜

1/2

0.6万元

棉花

1/3

0.5万元

玉米

1/4

0.3万元

查看答案和解析>>

同步练习册答案