【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,
f(x)=.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
【答案】(1) (2)
【解析】试题分析:(1)设x<0,可得-x>0,则f(-x)=,再由函数f(x)是偶函数求出x<0时的解析式,则答案可求;
(2)由f(4)==2,因为f(x)是偶函数,不等式f(x2-1)>-2可化为f(|x2-1|)>f(4),利用函数f(x)在(0,+∞)上是减函数,可得|x2-1|<4,求解绝对值的不等式可得原不等式的解集.
试题解析:
(1)当x<0时,-x>0,则f(-x)=log (-x).
因为函数f(x)是偶函数,所以f(-x)=f(x)=log (-x),
所以函数f(x)的解析式为
f(x)=
(2)因为f(4)=log4=-2,f(x)是偶函数,
所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).
又因为函数f(x)在(0,+∞)上是减函数,
所以|x2-1|<4,解得-<x<,
即不等式的解集为(-,).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )
A. AC⊥BE
B. EF∥平面ABCD
C. 三棱锥A-BEF的体积为定值
D. △AEF的面积与△BEF的面积相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且以两焦点为直径的圆的内接正方形面积为2.
(1)求椭圆的标准方程;
(2)若直线: 与椭圆相交于, 两点,在轴上是否存在点,使直线与的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别是,点在椭圆上, 是等边三角形.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点在椭圆上,线段与线段交于点,若与的面积之比为,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.
(Ⅰ)求得方程;
(Ⅱ)设点在曲线上, 轴上一点(在点右侧)满足.平行于的直线与曲线相切于点,试判断直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=1,a2=,an+1-an+an-1=0 (n≥2,且n∈N*),若数列{an+1+λan}是等比数列.
(1)求实数λ;
(2)求数列{an}的通项公式;
(3)设,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com