精英家教网 > 高中数学 > 题目详情
已知函数,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.
【答案】分析:(Ⅰ)导数在切点处的导数值是切线斜率,垂直的直线斜率互为负倒数.
(Ⅱ)导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间
(Ⅲ)用导数研究函数的单调性,求函数的最值,证明不等式.
解答:解:(Ⅰ)函数f(x)的定义域为{x|x>0},
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,
所以f'(1)=a+1=2,
即a=1.
(Ⅱ)由于
当a≥0时,对于x∈(0,+∞),有f'(x)>0在定义域上恒成立,
即f(x)在(0,+∞)上是增函数.
当a<0时,由f'(x)=0,得
时,f'(x)>0,f(x)单调递增;
时,f'(x)<0,f(x)单调递减.
(Ⅲ)当a=1时,x∈[2,+∞).

当x>2时,g′(x)<0,g(x)在(2,+∞)单调递减.
又g(2)=0,所以g(x)在(2,+∞)恒为负.
所以当x∈[2,+∞)时,g(x)≤0.

故当a=1,且x≥2时,f(x-1)≤2x-5成立.
点评:本题考查导数的几何意义;切点处的导数为切线斜率;用导数求单调区间:导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间;用导数求最值,证明不等式.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省百所重点高中高三(上)段考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省天水一中高一(下)第二次段考数学试卷(解析版) 题型:解答题

已知函数,a∈R.
(1)当a=1时,求函数f(x)的最大值;
(2)如果对于区间上的任意一个x,都有f(x)≤1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届广东省梅州市高二第二学期3月月考理科数学试卷 题型:解答题

 

已知函数  (a∈R).

 (1)若在[1,e]上是增函数,求a的取值范围; 

(2)若a=1,1≤x≤e,证明:<.

 

查看答案和解析>>

同步练习册答案