精英家教网 > 高中数学 > 题目详情
17.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求异面直线A1B与B1C所成角的余弦值..
(2)若点E、F分别是AB、A1B的中点,求证:EF∥平面BDD1

分析 (1)连接A1D,将B1C平移到A1D,根据异面直线所成角的定义可知∠BA1D为异面直线A1B与B1C所成的角,在△A1DB中利用余弦定理求出此角的余弦值;
(2)连接BD1,根据EF∥DD1来证明EF∥平面BDD1

解答 解:(1)连接A1D,
∵A1D∥B1C,
∴∠BA1D为异面直线A1B与B1C所成的角.
连接BD,在△A1DB中,A1B=A1D=5,BD=4$\sqrt{2}$,
则cos∠BA1D=$\frac{{A}_{1}{B}^{2}+{A}_{1}{D}^{2}-B{D}^{2}}{2{A}_{1}B•{A}_{1}D}$=$\frac{25+25-32}{2•5•5}$=$\frac{9}{25}$.
∴异面直线A1B与B1C所成角的余弦值为$\frac{9}{25}$;
(2)证明:∵点E、F分别是AB、A1B的中点,
∴EF∥AA1
∵DD1∥AA1
∴EF∥DD1
又DD1?平面BDD1,EF?平面BDD1
∴EF∥平面BDD1

点评 本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列命题中错误的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面β,α∩β=l,过α内任意一点作l的垂线m,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中,E、F分别是线段BC、CD1的中点.
(1)求异面直线EF与AA1所成角的大小
(2)求直线EF与平面AA1B1B所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的方程x2-x-(m+1)=0在[-1,1]上有解,则m的取值范围是[-$\frac{5}{4}$,1].(结果写成区间形式)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列选项中表述正确的是(  )
A.空间中任意三点确定一个平面
B.直线上的两点和直线外的一点可以确定一个平面
C.分别在三条不同的直线上的三点确定一个平面
D.不共线的四点确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列结论:
①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分不必要条件;
③命题“若x=y,则sinx=siny”的逆否命题为真命题.
其中正确的是(  )
A.①②③B.①③C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在四棱锥E-ABCD中,底面ABCD是边长为2的正方形,△BCE为等边三角形,平面ABCD⊥平面BCE,F为CD上的动点,当AF+EF最小时,四棱锥E-ABCD与三棱锥F-ABE的外接球的半径之比为2$\sqrt{7}$:5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.变量x,y之间的一组相关数据如表所示:
x4567
y8.27.86.65.4
若x,y之间的线性回归方程为$\widehaty$=$\widehatb$x+12.28,则$\widehatb$的值为(  )
A.-0.92B.-0.94C.-0.96D.-0.98

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若将函数f(x)=sin2x+cos2x的图象向左平移φ个单位,所得图象关于y轴对称,则φ的最小正值是$\frac{π}{8}$.

查看答案和解析>>

同步练习册答案