精英家教网 > 高中数学 > 题目详情
(2006•西城区二模)在数列{an}中,a1=1,an+1=1-
1
4an
bn=
2
2an-1
,其中n∈N*
(1)求证:数列{bn}是等差数列;
(2)求证:在数列{an}中对于任意的n∈N*,都有an+1<an
(3)设cn=(
2
)bn
,试问数列{cn}中是否存在三项,它们可以构成等差数列?如果存在,求出这三项;如果不存在,说明理由.
分析:(1)利用等差数列的定义,证明bn+1-bn为常数即可;
(2)确定数列{an}的通项公式,作差比较,即可得到结论;
(3)利用反证法,假设在{cn}中存在第m,p,q(m<p<q,且m,p,q∈N*)项成等差数列,从而得出矛盾.
解答:(1)证明:bn+1-bn=
2
2an+1-1
-
2
2an-1
=2

所以数列{bn}是首项b1=
2
2a1-1
=2
,公差为2的等差数列;
(2)证明:由(1)知bn=2n,n∈N*
所以an=
n+1
2n
=
1
2
(1+
1
n
)
an+1=
1
2
(1+
1
n+1
)

所以an+1-an=
1
2
(1+
1
n
)-
1
2
(1+
1
n+1
)=
1
2
(
1
n+1
-
1
n
)<0

即:对任意的n∈N*,an+1<an
(3)解:由(2)知,cn=(
2
)2n=2n

假设在{cn}中存在第m,p,q(m<p<q,且m,p,q∈N*)项成等差数列,
则:2•2P=2m+2q,∴2p+1=2m+2q,∴2p+1-m=2q-m+1,
因为m,p,q∈N*
所以2p+1-m为偶数,2q-m+1为奇数,两者不可能相等,即假设不成立,
所以在数列{cn}中不存在三项可以构成等差数列.
点评:本题考查等差数列的证明,考查数列的通项,考查反证法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•西城区二模)已知实数c≥0,曲线C:y=
x
与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为(a,
a
)
,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当c=0,b≥
1
2
时,求证:
n
k=1
xk+1-xk
xk+2
42
2
(n,k∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)sin600°+tan240°的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)函数y=
x2+1
(x>0)
的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)等差数列{an}中,a1+a3+a5+a7=4,则a2+a4+a6=(  )

查看答案和解析>>

同步练习册答案