精英家教网 > 高中数学 > 题目详情
.(本小题满分12分)如图,在正方体中,
分别为棱的中点.
(1)求证:∥平面
(2)求证:平面⊥平面
(3)如果,一个动点从点出发在正方体的
表面上依次经过棱上的点,最终又回到点,指出整个路线长度的最小值并说明理由.
(1)证明:连结.

在正方体中,对角线.
 E、F为棱AD、AB的中点,
.
.                                                      …………2分
又B1D1平面平面
  EF∥平面CB1D1.                                                …………4分
(2)证明: 在正方体中,AA1⊥平面A1B1C1D1
而B1D1平面A1B1C1D1
 AA1⊥B1D1.
在正方形A1B1C1D1中,A1C1⊥B1D1
 B1D1⊥平面CAA1C1.                  …………6分
 B1D1平面CB1D1
平面CAA1C1⊥平面CB1D1.             …………8分
(3)最小值为 .                    …………9分
如图,将正方体六个面展开成平面图形,                             …………10分
从图中F到F,两点之间线段最短,而且依次经过棱BB1、B1C1、C1D1、D1D、DA上的中点,所求的最小值为 .                                            …………12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

10分)
如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知梯形中,
分别是上的点,的中点。沿将梯形翻折,使平面⊥平面 (如图) .

(Ⅰ)当时,求证: ;
(Ⅱ)以为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求钝二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,在四棱锥P-ABCD中,底面为正方形,PA丄平面ABCD,且PA=AD,E为棱PC上的一点,PD丄平面
(I)求证:E为PC的中点;
(II)若N为CD的中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,是棱的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:
(2) 求证:
(3)求直线与直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,已知中,平面
分别为的中点.
(1)求证:平面平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,平行四边形中,,且,正方形所在平面和平面垂直,分别是的中点.
(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱锥S-ABCD中,E是BC的中点,P点在侧面内及其边界上运动,并且总是保持PEAC.则动点P的轨迹与△SCD组成的相关图形最有可能的是(   ).
 

查看答案和解析>>

同步练习册答案