试题分析:(1)f(x)=2sinx,
F(x)=f(x)+f(x+
)=2sinx+2sin(x+
)=2(sinx+cosx),
F(
)=2
,F(﹣
)=0,F(﹣
)≠F(
),F(﹣
)≠﹣F(
),
所以,F(x)既不是奇函数,也不是偶函数.
(2)f(x)=2sin2x,
将y=f(x)的图象向左平移
个单位,再向上平移1个单位后得到y=2sin2(x+
)+1的图象,所以g(x)=2sin2(x+
)+1.
令g(x)=0,得x=kπ+
或x=kπ+
(k∈z),
因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,
当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.
综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.
点评:本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键