精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数满足条件是偶函数, ,且的图象与直线恰有一个公共点.

1)求的解析式;

2)设,是否存在实数,使得函数在区间上的最大值为2?如果存在,求出的值;如果不存在,请说明理由.

【答案】1;(2.

【解析】

1)根据是偶函数、仅有一交点,得到对应的方程组,求解出的值即可求解出的解析式;

2)根据的对称轴,利用轴定区间动进行分类讨论,由此确定出符合条件的的取值.

1)因为是偶函数,所以的对称轴为,所以

又因为,所以

又因为仅有一交点,所以仅有一根,所以

所以,所以,所以

2)因为,所以的对称轴

时即上单调递减,

所以,解得:(舍);

时,上单调递增,

所以,解得:(舍);

时,上递增,在上递减,

所以,此时不满足.

综上可知:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数(其中)满足下列三个条件:图象过坐标原点;②对于任意成立;③方程有两个相等的实数根.

(1)求函数的解析式;

(2)(其中),求函数的单调区间(直接写出结果即可);

(3)研究方程在区间内的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知半径为的圆,圆心在轴正半轴上,且与直线相切.

(1)求圆的方程;

(2)在圆上,是否存在点,满足,其中,点的坐标是.若存在,指出有几个这样的点;若不存在,请说明理由;

(3)若在圆上存在点,使得直线与圆相交不同两点,求的取值范围.并求出使得的面积最大的点的坐标及对应的的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足.

1)求的解析式;

2)若上单调,求的取值范围;

3)设a≠1),(),当时,有最大值14,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程为该椭圆经过点,且离心率为

(1)求椭圆的标准方程;

(2)过椭圆长轴上一点作两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的奇函数a为实数)

1)求a的值;

2)判断的单调性(不必证明),并求出的值域;

3)若对任意的,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

同步练习册答案