【题目】若存在常数 k(k∈N * , k≥2)、d、t( d , t∈R),使得无穷数列 {a n }满足a n +1,则称数列{an }为“段差比数列”,其中常数 k、d、t 分别叫做段长、段差、段比.设数列 {bn }为“段差比数列”.
(1)已知 {bn }的首项、段长、段差、段比分别为1、 2 、 d 、 t .若 {bn }是等比数列,求 d 、 t 的值;
(2)已知 {bn }的首项、段长、段差、段比分别为1、3 、3 、1,其前 3n 项和为 S3n .若不等式 S3n≤ λ 3n1对 n ∈ N *恒成立,求实数 λ 的取值范围;
(3)是否存在首项为 b,段差为 d(d ≠ 0 )的“段差比数列” {bn },对任意正整数 n 都有 bn+6 = bn ,若存在, 写出所有满足条件的 {bn }的段长 k 和段比 t 组成的有序数组 (k, t );若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】有以下命题:
①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};
②若函数f(x)是偶函数,则f(|x|)=f(x);
③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;
④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;
其中真命题的序号是 .(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在地上有同样大小的 5 块积木,一堆 2 个,一堆 3 个,要把积木一块一块的全部放到某个盒子里,每次 只能取出其中一堆最上面的一块,则不同的取法有______种(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=,△BF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,纵坐标扩大到原来的2倍得到函数的图象,则下列关于函数的命题中正确的是( )
A.函数是奇函数B.的图象关于直线对称
C.在上是增函数D.当时,函数的值域是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成,,,,,,组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)若一个零件的尺寸是,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),点为椭圆短轴的上端点,为椭圆上异于点的任一点,若点到点距离的最大值仅在点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知.
(1)若,判断椭圆是否为“圆椭圆”;
(2)若椭圆是“圆椭圆”,求的取值范围;
(3)若椭圆是“圆椭圆”,且取最大值,为关于原点的对称点,也异于点,直线、分别与轴交于、两点,试问以线段为直径的圆是否过定点?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com