精英家教网 > 高中数学 > 题目详情
在△ABC中,设角A,B,C的对边分别为a,b,c.已知B=45°,C=120°,b=2,则c=(  )
A、1
B、
2
C、2
D、
6
考点:正弦定理
专题:解三角形
分析:由题意和正弦定理直接求出边c即可.
解答: 解:由题意得,B=45°,C=120°,b=2,
则由正弦定理得
c
sinC
=
b
sinB
,所以c=
3
2
2
2
=
6

故选:D.
点评:本题考查正弦定理的应用:解三角形,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

具有线性相关关系的变量x,y,满足一组数据如表所示.若y与x的回归直线方程为y=2x则m的值是(  )
x0123
y-11m8
A、4
B、
9
2
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ax+1)-ax.
(1)当a=1时,试讨论函数f(x)的单调性;
(2)若g(x)=f(x)+x3-x2在[1,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果是(  )
A、0B、-1C、-2D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆E与x轴相切,圆心在y轴正半轴上,且被直线x-y=0截得的弦长为2
2

(1)求圆E 标准方程;
(2)过定点P(-3,0)的直线交圆E于不同的两点M,N,在线段MN上取异于M,N的点H(x0,y0),满足
|
PM
|
|
PN
|
=
|
MH
|
|
NH
|
,试求点H的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在正实数n,使f(x)在[-n,n]上的值域为[0,n],则称f(x)为“n矩函数“.例如y=x2是“1矩函数”,y=
1
2
x+
3
4
是“
3
2
矩函数”.
(1)指出下列函数是否为“n矩函数”,若是,请写出正实数n的值组合的集合;
①y=
1
x
②y=-
1
2
x+1
;③y=|x|.
(2)设指数函数f(x)的图象经过点(1,
4
3
),且g(x)=f(|x-c|)-1是“3矩函数”,求实数c的值.
(3)如果对于(2)中函数f(x)的反函数f-1(x),当n∈N*,函数hn(x)=f-1
an+x
bn-x
)(其中an>0且bn>0)是“n矩函数”,①请根据n=1时,hn(x)是“1矩函数”,求a1和b1的值并写出h1(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图算法最后输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题错误的是(  )
A、已知直线a∥b,且b∥c,则a∥c
B、已知直线a∥平面α,且直线b∥平面α,则a∥b
C、已知直线a∥平面α,过平面α内一点作b∥a,则b?α
D、过平面外一点可以做无数条直线与这个平面平行,并且这些直线都在同一平面内

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一条直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,F为抛物线的焦点,若△ABO与△AFO面积之和的最小值为50
5
,则抛物线的方程为(  )
A、y2=20x
B、y2=10x
C、y2=5x
D、y2=
5
2
x

查看答案和解析>>

同步练习册答案