【题目】如图,在正六棱锥中,已知底边为2,侧棱与底面所成角为.
(1)求该六棱锥的体积;
(2)求证:
【答案】(1)12;(2)证明见解析.
【解析】
(1)连结AD,过P作PO⊥底面ABCD,交AD于点O,则PA=2AO=4,由此能求出该六棱锥的体积.
(2)连结CE,交AD于点O,连结PG,推导出AD⊥CE,PG⊥CE,从而CE⊥平面PAD,由此能证明PA⊥CE.
∵在正六棱锥P﹣ABCDEF中,底边长为2,侧棱与底面所成角为60°.
连结AD,过P作PO⊥底面ABCD,交AD于点O,
则AO=DO=2,∠PAO=60°,∴PA=2AO=4,
PO2,
SABCDEF=6×()=6,
∴该六棱锥的体积V12.
(2)连结CE,交AD于点O,连结PG,
∵DE=CD,AE=AD,∴AD⊥CE,O是CE中点,
∵PA=PC,∴PG⊥CE,
∵PG∩AD=G,∴CE⊥平面PAD,
∵PA平面PAD,∴PA⊥CE.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ(ρ﹣2sinθ)=1.
(1)求C的直角坐标方程;
(2)设直线l与y轴相交于P,与曲线C相交于A、B两点,且|PA|+|PB|=2,求点O到直线l的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为1的正方形ABCD沿x轴正向滚动,先以A为中心顺时针旋转,当B落在x轴时,又以B为中心顺时针旋转,如此下去,设顶点C滚动时的曲线方程为,则下列说法不正确的是
A.恒成立B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),g(x)=f()+1(k∈R,k≠0),则下列关于函数y=f[g(x)]+1的零点个数判断正确的是( )
A.当k>0时,有2个零点;当k<0时,有4个零点
B.当k>0时,有4个零点;当k<0时,有2个零点
C.无论k为何值,均有2个零点
D.无论k为何值,均有4个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是抛物线E:y2=4x上的动点,F是抛物线E的焦点.
(1)求|PF|的最小值;
(2)点B,C在y轴上,直线PB,PC与圆(x﹣1)2+y2=1相切.当|PF|∈[4,6]时,求|BC|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工、两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中,两种支付方式都没有使用过的有5人;使用了、两种方式支付的员工,支付金额和相应人数分布如下:
支付金额(元) 支付方式 | 大于2000 | ||
使用 | 18人 | 29人 | 23人 |
使用 | 10人 | 24人 | 21人 |
依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月、两种支付方式都使用过的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表列出了10名5至8岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合y与x的关系:
体重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
体积y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y关于x的线性回归方程(系数精确到0.01);
(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:,,,,
,,137×14=1918.00.
参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。公元263年,中国数学家刘徽用“割圆术”计算圆周率,计算到圆内接3072边形的面积,得到的圆周率是.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。大约在公元530年,印度数学大师阿耶波多算出圆周率约为().在这4个圆周率的近似值中,最接近真实值的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行
(1)以小虫爬行时间为参数,写出射线的参数方程;
(2)求小虫在曲线内部逗留的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com