精英家教网 > 高中数学 > 题目详情

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料.用5个工时;生产一件产品B需要甲材料,乙材料 ,用3个工时。生产一件产品A的利润为2100元,生产一件产品B的利润为900元,该企业现有甲材料150,乙材料,则在不超过600个工时的条件下,生产产品A,产品B的利润之和的最大值为______________元.

【答案】216000元

【解析】设生产A产品x件,B产品y件,利润总和为z,

,目标函数z=2100x+900y,

做出可行域如图所示:

z=2100x+900y变形,得,

由图象可知,当直线经过点M时,z取得最大值.

解方程组 M的坐标为(60,100).

所以当x=60,y=100时,zmax=2100×60+900×100=216000.

故生产产品A、产品B的利润之和的最大值为216000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在,使上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点的坐标为,直线的参数方程为为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.

(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;

(Ⅱ)直线与圆的交点为,证明:是与无关的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.

(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);

(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届北京市海淀区】如图,三棱柱侧面底面

分别为棱的中点.

Ⅰ)求证:

Ⅱ)求三棱柱的体积;

Ⅲ)在直线上是否存在一点,使得平面?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,且函数的图象是函数图象的一条切线,求实数的值;

(2)若不等式对任意恒成立,求实数的取值范围;

(3)若对任意实数,函数上总有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某市31日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择31日至313日中的某一天到达该市,并停留2天.

Ⅰ)求31日到14日空气质量指数的中位数;

Ⅱ)求此人到达当日空气重度污染的概率;

Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别无关

C. 倾向选择生育二胎的人员中,男性人数与女性人数相同

D. 倾向选择生育二的人员中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

同步练习册答案