已知F1,F2分别为椭圆C1:=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=.
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足,求实数λ的取值范围.
科目:高中数学 来源: 题型:解答题
设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A,B,F为抛物线的焦点.
(1)求△ABF的重心G的轨迹方程;
(2)如果m=-2,求△ABF的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为
(1)求双曲线的方程;
(2)用表示点的坐标;
(3)若,的中垂线交轴于点,直线交轴于点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点A (p为常数,p>0),B为x轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点G在y轴上.
(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线于、两点,过点和原点的直线交直线于点,求证:直线平行于轴.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com