精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点B、C在椭圆
x2
3
+y2=1上,顶点A是椭圆的一个焦点,且BC边经过椭圆的另外一个焦点,则△ABC的周长是(  )
A、2
3
B、4
3
C、6
D、3
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设另一个焦点为F,根据椭圆的定义可知|AB|+|BF|=2a,|AC|+|FC|=2a最后把这四段线段相加求得△ABC的周长.
解答: 解:椭圆
x2
3
+y2=1的a=
3

设另一个焦点为F,则根据椭圆的定义可知
|AB|+|BF|=2a=2
3
,|AC|+|FC|=2a=2
3

∴三角形的周长为:|AB|+|BF|+|AC|+|FC|=4
3

故选:B.
点评:本题主要考查数形结合的思想和椭圆的基本性质,解题的关键是利用椭圆的第一定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知随机变量ξ的分布列如表所示,则D(ξ)=
 
ξ012
p
1
2
a
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某兴趣小组测得菱形养殖区ABCD的固定投食点A到两条平行河岸线l1、l2的距离分别为4米、8米,河岸线l1与该养殖区的最近点D的距离为1米,l2与该养殖区的最近点B的距离为2米.
(1)如图甲,养殖区在投食点A的右侧,若该小组测得∠BAD=60°,请据此算出养殖区的面积S,并求出直线AD与直线l1所成角的正切值;
(2)如图乙,养殖区在投食点A的两侧,试求养殖区面积S的最小值,并求出取得最小值时∠BAD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与直线y=a相交所得的线段长为2b,则该双曲线的离心率的平方为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
(x+1)ln(x+1)

(I)求函数f(x)的单调区间;
(Ⅱ)是否存在实数m,使不等式
1
x+1
ln2>mln(x+1)在-1<x<0时恒成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
(Ⅲ)已知正整数列{cn}中,(Cn)(n+1)2=e
1
f(n)
(n∈N*),求数列{cn}
中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD与ABEF是全等的直角梯形,AB⊥AD,底面四边形ADGF为菱形,二面角D-AB-F=1200,AD=2BC=4,AB=2,
(1)求证:FD⊥BG
(2)求证:CE∥DF
(3)求点A到面CEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
16
+
y2
7
=1上的动点,M为过P且垂直于x轴的直线上的点,
|OP|
|OM|
=λ.求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,若a2+a7+a12=60,则S13的值是(  )
A、130B、260
C、20D、150

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{1,2,3}是集合M的真子集,M是{1,2,3,4,5,6}的真子集,求符合M的个数.

查看答案和解析>>

同步练习册答案