精英家教网 > 高中数学 > 题目详情
8.若tanα+$\frac{1}{tanα}$=3,则sinα•cosα=$\frac{1}{3}$,tan2α+$\frac{1}{ta{n}^{2}α}$=7.

分析 利用同角三角函数的基本关系式,化简求解即可.

解答 解:tanα+$\frac{1}{tanα}$=3,
可得3sinαcosα=sin2α+cos2α=1,
∴sinα•cosα=$\frac{1}{3}$.
tanα+$\frac{1}{tanα}$=3,两边平方可得:tan2α+$\frac{1}{ta{n}^{2}α}$=7.
故答案为:$\frac{1}{3}$;7.

点评 本题考查同角三角函数的基本关系式的应用,三角函数的化简求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若数列{an}满足a1=3,且an+1=an2,通项an=${3}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列命题:
①两两相交的三条直线共面;
②两条相交直线上的三个点可以确定一个平面;
③梯形是平面图形;
④一条直线和一个点可以确定一个平面;
⑤两条相交直线可以确定一个平面;
⑥若点P不在平面α内,A,B,C三点都在平面α内,则P,A,B,C四点不在同一平面内.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)由下表给出,则f(2)+f(3)=(  )
x1234
f(x)0.5251
A.2.5B.7C.5.5D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知⊙C:(x-1)2+(y-2)2=2,过P(2.-1)作⊙C的切线,切点为A、B.
(1)求直线PA、PB的方程;
(2)求过P点⊙C的切线长;
(3)求∠APB;
(4)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若AB=1,则△ABC的周长为(  )
A.1+2sin(A+$\frac{π}{6}$)B.1+2sin(A+$\frac{π}{3}$)C.1+sin(A+$\frac{π}{6}$)D.1+sin(A+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)满足f(x)+2f($\frac{1}{x}$)=3x,则f(-2)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.要使不等式$\frac{b}{a}$+$\frac{a}{b}$≤-2成立,则a,b的取值条件为ab<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数(a,b,c∈Z),且f(1)=2,f(2)<3,求f(x)

查看答案和解析>>

同步练习册答案