精英家教网 > 高中数学 > 题目详情

已知数列的前项和为正整数)。
(1) 令,求证:数列是等差数列,并求数列的通项公式;
(2) 令,求使得成立的最小正整数,并证明你的结论.

(1)
(2)最小正整数  

解析试题分析:解:(1)在中,
令n=1,可得,即     2分
时,
.     2分
.
数列是首项和公差均为1的等差数列.  5分
于是.     7分
(2)由(1)得,所以

 9分
由①-②得                               
          11分
        13分
下面证明数列是递增数列.
, ∴,

∴数列单调递增
所以, 使得成立的最小正整数   16分
考点:等比数列
点评:主要是考查了等比数列的求和的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知各项为正数的等差数列满足,且).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,点在直线上,且.
(Ⅰ)求证:数列是等差数列,并求
(Ⅱ)设,数列的前项和为成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知递增等差数列前3项的和为,前3项的积为8,
(1)求等差数列的通项公式;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为等差数列,是等差数列的前项和,已知.
(1)求数列的通项公式;(2)为数列的前项和,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为,点均在函数y=-x+12的图像上.
(Ⅰ)写出关于n的函数表达式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)求数列的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的等差数列首项为1,且成等比数列,
(1)求通项公式;
(2)求数列前n项和
(3)若对任意正整数n都有成立,求范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,当时,总有成立,且
(Ⅰ)证明:数列是等差数列,并求数列的通项公式;
(Ⅱ)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}满足,且
(1)求证:数列{}是等差数列;
(2)求数列{}的通项公式;
(3)设数列{}的前项之和,求证:

查看答案和解析>>

同步练习册答案