精英家教网 > 高中数学 > 题目详情
已知点M(x0,y0)是函数f(x)=sinx的图象上一点,且f(x0)=1,则该函数图象在点M处的切线的斜率为(  )
分析:由f(x0)=1,解得切点横坐标,然后求函数的导数,然后求切线斜率即可.
解答:解:由f(x0)=1,得sinx0=1,解得x0=
π
2

因为f(x)=sinx,所以f'(x)=cosx,
所以函数图象在点M处的切线的斜率k=f′(
π
2
)=cos?
π
2
=0

故选D.
点评:本题主要考查导数的几何意义,考查导数的基本运算,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点B′为圆A:(x-1)2+y2=8上任意一点、点B(-1,0).线段BB′的垂直平分线和线段AB′相交于点M.
(1)求点M的轨迹E的方程;
(2)已知点M(x0,y0)为曲线E上任意一点.求证:点P(
3x0-2
2-x0
4y0
2-x0
)
关于直线x0x+2y0y=2的对称点为定点、并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x0,y0)在圆x2+y2=4上运动,N(4,0),点P(x,y)为线段MN的中点.
(1)求点P(x,y)的轨迹方程;
(2)求点P(x,y)到直线3x+4y-86=0的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x0,y0)(x0≠0)在抛物线E:y2=2px(p>0)上,抛物线的焦点为F.有以下命题:
①抛物线E的通径长为2p;
②若p=2,则|MF|-x0恒为定值1;
③若2p=1,且△MON(O为坐标原点,N在抛物线E上)为正三角形,则|MN|=4
3

④若2p=1,则抛物线E上一定存在两点关于直线y=-x+3对称.
其中你认为正确的所有命题的序号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x0,y0)(x0≠0)在抛物线E:y2=2px(p>0)上,抛物线的焦点为F.有以下命题:
①抛物线E的通径长为2p;
②若以M为切点的抛物线E的切线为l,则直线y=y0与直线l所成的夹角和直线MF与直线l所成的夹角相等;
③若2p=1,且△MON(O为坐标原点,N在抛物线E上)为正三角形,则|MN|=4
3

④若2p=1,b∈(
3
4
,+∞)
,则抛物线E上一定存在两点关于直线y=-x+b对称.
其中你认为正确的所有命题的序号为
①②④
①②④

查看答案和解析>>

同步练习册答案