精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)令,讨论的单调性;

2)若,求a的取值范围.

【答案】1)函数时在上单调递减;当时在单调递增,在单调递减.(2

【解析】

1)表示的解析式,先确定定义域,再对其求导,利用分类讨论a的正负,解大于零和小于零的不等式,求得范围对应为增区间与减区间;

2等价于,利用(1)中的单调性结果,利用分类讨论思想表示,使其小于等于0,解得对应a的取值范围,综上分类讨论结果,求得答案.

1)由题可知,定义域为

所以

时,,则上单调递减;

时,令(负根舍去).

;令

所以单调递增,在单调递减,

综上所述,函数时在上单调递减;当时在单调递增,在单调递减.

2,即

时,,符合题意,

时,由(1)可知

时,上单调递减,

的图象在上只有一个交点,

设此交点为,则当时,

故当时,不满足

综上,a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为的欧拉三角形.如图,的欧拉三角形(H的垂心).已知,若在内部随机选取一点,则此点取自阴影部分的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,曲线C的参数方程为a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求C的普通方程和l的倾斜角;

2)设点lC交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥是等边三角形,的中点.

1)求证:直线平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面,点是棱的中点,,点是棱上一点,且.

1)证明:平面

2)若,点在棱上,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)令,讨论的单调性;

2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.两点(轴上方),交极轴于点(异于极点.

1)求的直角坐标方程和的直角坐标;

2)若的中点,上的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间和极值;

2)若对于任意的,总存在,使得成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,已知.

1)若的面积为,求的值;

2)若,且角为钝角,求实数的取值范围.

查看答案和解析>>

同步练习册答案