精英家教网 > 高中数学 > 题目详情
如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求证:BD1⊥平面ACB1
(3)求三棱锥B-ACB1体积.
(1)证明:∵AC⊥BD,AC⊥BB1
∴AC⊥平面B1D1DB.
(2)证明:连接A1B,在正方体ABCD-A1B1C1D1中,
面A1B1BA是正方形,对角线A1B⊥AB1
在正方体ABCD-A1B1C1D1中,D1A1⊥面A1B1BA,AB1在面A1B1BA上,
∴D1A1⊥AB1
∵AB1⊥A1B,AB1⊥D1A1
A1B和D1A1是面A1BD1内的相交直线,
∴AB1⊥面A1BD1,又BD1在面A1BD1上,
∴AB1⊥BD1,同理,D1D⊥面ABCD,
AC在面ABCD上,D1D⊥AC,
在正方形ABCD中对角线AC⊥BD,
∵AC⊥D1D,AC⊥BD,D1D和BD是面BDD1内的相交直线,
∴AC⊥面BDD1,又BD1在面BDD1上,
∴AC⊥BD1
∵BD1⊥AB1,BD1⊥AC,
AB1和AC是面ACB1内的相交直线
∴BD1⊥面ACB1
(3)三棱锥B-ACB1,也就是ABC为底,BB1为高的三棱锥,
三棱锥B-ACB1体积
V=
1
2
×AB×AD×
1
3
BB1=
1
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,E是DD1的中点.
(1)求证:BD1平面ACE
(2)过直线BD1是否存在与平面ACE平行的平面,若存在,请作出这个平面与长方体ABCD-A1B1C1D1的交线(请在答题卡上用黑色碳素笔和直尺作图),并证明这两个平面平行;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=2
2

(Ⅰ)求证:EF平面A1BC1
(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:其中正确的结论的个数为(  )
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1-D1CA的体积为
1
3

④A1C⊥AB1,A1C⊥BC1
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥平面ABCD,且PA=AD=2,E、F、H分别是线段PA、PD、AB的中点.
(1)求证:PD⊥平面AHF;
(2)求证:平面PBC平面EFH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面是边长为2的正方形,PA⊥底面ABCD,PA=2
2
,求直线PA与底面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是
5
17
13
,则P到A点的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O.
(1)求证:CD平面A1EB;
(2)求证:AB1⊥平面A1EB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱BC,CC1,C1D1,AA1的中点,O为AC与BD的交点.
(1)求证:平面BDF平面B1D1H;
(2)求证:平面BDF⊥平面A1AO;
(3)求证:EG⊥AC.

查看答案和解析>>

同步练习册答案