精英家教网 > 高中数学 > 题目详情

观察以下各等式:
  

分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明。

详见解析

解析试题分析:按规律猜想:。用二倍角降幂,再按两角和差公式展开,再结合同角三角函数关系式可证明。
试题解析:猜想:
证明:


考点:1归纳猜想。2三角函数的化简。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象与x轴有两个不同的交点,若f(c)=0且0<x<c时,f(x)>0,
(1)证明:是f(x)=0的一个根;
(2)试比较与c的大小;
(3)证明:-2<b<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由下列各个不等式:

你能得到一个怎样的一般不等式?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=1,且4an+1-anan+1+2an=9(n∈N?).
(1)求a2,a3,a4的值;
(2)由(1)猜想{an}的通项公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,求证: a-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数对任意实数x 、y都有
(1)求的值;
(2)若,求的值;
(3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面内,三角形的面积为S,周长为C,则它的内切圆的半径.在空间中,三棱锥的体积为V,表面积为S,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=______________________。
(二)选做题(14、15题,考生只能从中选做一题,两题都选的只计算第14题的得分.)

查看答案和解析>>

同步练习册答案