精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(  )
A.
B.
C.
D.

【答案】D
【解析】解:设A(x1 , y1),B(x2 , y2),
代入椭圆方程得
相减得
∵x1+x2=2,y1+y2=﹣2,
化为a2=2b2 , 又c=3= , 解得a2=18,b2=9.
∴椭圆E的方程为
故选D.
设A(x1 , y1),B(x2 , y2),代入椭圆方程得 , 利用“点差法”可得 . 利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得 . 于是得到 , 化为a2=2b2 , 再利用c=3= , 即可解得a2 , b2 . 进而得到椭圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=2,Sn=n2+n.
(1)求数列{an}的通项公式;
(2)设{ }的前n项和为Tn , 求证Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点.
(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x= 时,函数f(x)取得最小值,则下列结论正确的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆)的左、右焦点分别为,点在椭圆上, 的面积为.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)是否存在圆心在轴上的圆,使圆在轴的上方与椭圆

有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=
(1)证明:f(x)是定义域内的增函数;
(2)求f(x)的值域.

查看答案和解析>>

同步练习册答案