精英家教网 > 高中数学 > 题目详情

数列{an}中,a1=数学公式,an+1=数学公式,则该数列的前100项之和S100为________.


分析:本题可通过递推公式由首项a1求出数列的前五项,从而确定数列周期为3,再由数列周期求出一个周期内的数列的和,然后求解该数列的前100项之和S100
解答:数列{an}中,a1=,an+1=,a2=-,a3=0,a4=,a5=-,…
可知数列是周期为3的周期数列,并且一个周期内的三项的和为0,
所以该数列的前100项之和S100=33(a1+a2+a3)+a1=
故答案为:
点评:本题主要考查由递推公式推导数列的通项公式,其中渗透了周期数列这一知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案