【题目】已知椭圆过点,且椭圆的离心率.
(1)求椭圆的标淮方程;
(2)直线过点且与椭圆相交于、两点,椭圆的右顶点为,试判断是否能为直角.若能为直角,求出直线的方程,若不行,请说明理由.
科目:高中数学 来源: 题型:
【题目】某校要通过选拔赛选取一名同学参加市级乒乓球单打比赛,选拔赛采取淘汰制,败者直接出局。现有两种赛制方案:三局两胜制和五局三胜制。问两选手对决时,选择何种赛制更有利于选拔出实力最强的选手,并说明理由。(设各局胜负相互独立,各选手水平互不相同。)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一条准线方程为
⑴求椭圆的方程;
⑵设为椭圆上的两个动点,为坐标原点,且.
①当直线的倾斜角为时,求的面积;
②是否存在以原点为圆心的定圆,使得该定圆始终与直线相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有如下三个命题:
甲:相交直线l、m都在平面内,并且都不在平面内;
乙:直线l、m中至少有一条与平面相交;
丙:平面与平面相交.
当甲成立时
A. 乙是丙的充分而不必要条件
B. 乙是丙的必要而不充分条件
C. 乙是丙的充分且必要条件
D. 乙既不是丙的充分条件又不是丙的必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为2的正方体中, , , , 分别是棱, , , 的中点,点, 分别在棱, 上移动,且.
(1)当时,证明:直线平面;
(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,该椭圆经过点,且离心率为.
(1)求椭圆的标准方程;
(2)设是圆上任意一点,由引椭圆的两条切线,,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
(Ⅰ)求证:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱锥A-BDF的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com